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Evaluation of Blockage Interference on Propellers
in a Perforated-Wall Wind Tunnel

M. Mokry*
National Research Council of Canada, Ottawa KIA OR6, Canada

A method for the evaluation of blockage interference for propeller models in a perforated-wall wind tunnel
is presented. The correction procedure, based on a Fourier solution for the Dirichlet problem inside a cylindrical
flow domain, uses boundary data obtained from pressure measurements along the wind-tunnel walls and a far-
field representation of the propeller. The radial contraction of the slip stream is modeled by a sink, whose
strength and location are evaluated from the measured thrust and power using axial momentum theory. An
iterative procedure is developed for a compressible slip stream, using the Rankine—Froude theory as the first
approximation. The equations describing the discontinuity of momentum and energy across the propeller disk
are discussed and solved similarly to those describing a discontinuity across a normal shock.

Nomenclature

slip-stream cross-sectional area, wD?/4
wind-tunnel cross-sectional area

Fourier components of u

boundary values of a,, b,

power coefficient, P/(p,N>D;)

pressure coefficient

thrust coefficient, T/(p,N2D;,

velocity of sound

slip-stream diameter

differential operator

coefficient of Fourier sine series

common notation for a, and b,

common notation for 4, and b,

modified Bessel function of the first kind of
order n

enthalpy

Bessel function of the first kind of order n
advance ratio, v,/ND,

mass flux density, pv

kth positive zero of J,

Mach number

integer power of 2, number of subdivisions of
interval 2s

propeller rotational speed, rps

power

coefficients of Fourier—Bessel series
slip-stream radius or gas constant

radius of control cylinder

polar coordinates in the transformed space
reduced test section length or entropy
thrust

axial component of wall interference velocity
axial velocity

cylindrical coordinates

Prandtl-Glauert factor, V.1 — M3

ratio of specific heats, 1.4

Mach number correction
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] = propeller efficiency

M, Vi = eigenvalues

v = thrust-power term

& = transformed axial coordinate

p = air density

o = strength of sink representing propeller far
field

T = modified thrust coefficient, 4C,/(7J3)

¢ = velocity potential

¢ = disturbance velocity potential

N = free air part of ¢

o = wall interference part of ¢

¥ = stream function

Q = area ratio, A,/A;

Subscripts

id = ideal

n = index of the Fourier component

p = propeller

0 = station far upstream

1 = station immediately ahead of propeller plane

2 = station immediately behind propeller plane

3 = station far downstream

# = critical

Introduction

N the past two decades, advanced high-speed propellers

have been found to offer significant fuel savings and as-
sociated operating cost benefits for aircraft cruising in the
Mach 0.7-0.8 speed range. The wind-tunnel testing has,
understandably, played an important role in the evaluation
of the propulsive efficiency and optimization of this new gen-
eration of propellers.

Wall interference has been identified,' together with model
support interference and scale effects, as one of the factors
adversely affecting the reliability of wind-tunnel test data.
Unfortunately, Glauert’s correction technique,? based on the
axial momentum balance, cannot be easily extended to ven-
tilated-wall wind tunnels where most of the high-speed testing
is currently being done.

One can, however, utilize the well-established one-com-
ponent correction method,** which does not require the
knowledge of mass and momentum transfer through the walls.
The boundary values of the streamwise component of wall
interference velocity are obtained from static pressure mea-
surements near the test section walls and the estimated far
field of the model in free air. For perforated test section walls,
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Fig. 1 Propeller test rig and static pressure tubes in the IAR 1.5 X
1.5 m wind tunnel (courtesy of de Havilland, Inc.).

suitable pressure-measuring devices are cylindrical tubes
equipped with static pressure orifices facing the test section
interior, in the direction normal to the wall. In Fig. 1, showing
the experimental setup in the Institute for Aerospace Re-
search (IAR) 1.5 X 1.5 m test section, three out of a total
of six installed tubes can be seen: two at the bottom (on each
side of the removable floor board) and one on the sidewall.

Using model geometry and the measured lift force, the far-
field effects of a nacelle and a wing in subsonic flow can be
represented in the usual fashion by sources, sinks, and horse-
shoe vortices. The steady part of the propeller far field, which
is due to the radial contraction of the propulsive stream tube,
can be represented by a sink, whose strength and location are
evaluated from the measured thrust and power using the axial
momentum theory.

The far-field representation becomes unnecessary in the
two-component approach,® where both the static pressure and
flow angle distributions are measured around the test section
boundary. The penalty, compared to the one-variable method,
is the added difficulty of making the measurement of flow
angle in the highly perturbed environment of the ventilated
walls.”

Correction Method

The flow is investigated in the cylindrical domain x; < x <
X5, 0 =p <r, 0= 0 <2, inscribed in the wind-tunnel test
section. As indicated in Fig. 2, r is the radius and x, and x,
are the upstream and downstream ends of the domain, re-
spectively. It is assumed that flow near the boundary is sub-
sonic and that the disturbance velocity potential ¢(x, p, 6)
satisfies the linearized equation

a° 19 d 1 92
_2+__<_£> ¢

- t =0 (1)
ox= pop ap

Bh pz 802

According to small disturbance theory, the pressure coeffi-
cient at p = r is obtained as

d¢
Clx,r, ) = -2 o (x,r, 8) (2)

Within the linearized flow region we apply the decomposition

(P(X, P, 0) = ‘Pf(xa P, 9) + ‘Pw(xv P 0) (3)
where ¢, Is the disturbance velocity potential due to the model

in free air and ¢,, is the wall interference potential. Using the
scaled coordinate

&= (UB)x — x) 4)

Fig. 2 Cylindrical flow domain.

we introduce the transformed axial component of wall inter-
ference velocity

9.,
a¢

Wt p.0) = 0 0) = B p ) ()

ax
Differentiation of Eq. (1) with respect to ¢ and substitution
from Egs. (3) and (5) provide the governing equation

Fu 10 ou 1 0%u
—+-—lp—|+5—==0

a&*  pap (p 39) p* 06° ©)
in the domain 0 < £ <s5,0=p <r,0 =6 <27, where

s = (UB)(x: — x1) ™)

The boundary values are obtained from Egs. (2-5) as

u¢, r,8) = —B [% C,(x,r, 8) + Z—?(x, r, 0)] (8)

where C, is obtained by measurement and ¢, is expected to
be known. Since r = constant, locations of the pressure mea-
suring tubes are specified only by the azimuthal angles 6.
There is no easy correction to the input value u(¢, r, ) should
the actual radial coordinate of the tube differ from r.

Using periodicity, the solution is constructed in terms of
the Fourier series

%

u(é. p, 6) = ay(é, p) + X [a,(&, p)cos nf + b, (& p)sin né]
©)

Substitution in Eq. (6) gives

Dnan(§7 p) = 07 n = 0’ 17 2’ A

10
Db p) = O, (10)

where

2 92 19 2
D, =2+ +=2_L (11)
8g*  9p* pdp  p?

In order to solve for the Fourier components 4, and b,,, we
introduce the boundary values

a,(&) = a,(& )
Bn(g) = bﬂ(g’ r)

and express them, using Eq. (9), in terms of the known values
u(¢, r, 6). The actual number of Fourier components we are
able to exploit is given by the number of pressure measuring
tubes (typically 4-6).

(12)
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Using Egs. (10) and (12), and f, as a common notation for
both a, and b,,, we can set up the following Dirichlet boundary
value problem:

ann(gap)zoa 0<§<57 OSp<r

fn(§7 ’:) = fn(f)v 0= § =5 (13)
£A0, p) = £, (0)pir)",  O=p=r
fls.p) = Fls)piry,  O=p=r

The last two boundary conditions, which were added on the
upstream and downstream surfaces in order to complete the
specification of the Dirichlet problem, were formulated so as
to ensure close-form solutions for the coefficients of the re-
sulting Fourier—Bessel series.

Applying the method of separation of variables (see the
Appendix), the solution is obtained in terms of the Fourier
sine series in & and the Fourier—Bessel series in p:

fn(fi p) = kgl F, . I_n('/ik‘e) sin ,Lbkg

nk In(Mkr)
< sinh v, (s — &) sinh v, £
+ P, ——=2 4
/21 [ "k sinh v, s QO sinh v, .s
X Jn(Vn,kp) (14)
The eigenvalues entering Eq. (14) are
Mo = kmls and v, = juilr (15)

where j, . is the kth positive root of J,.
The boundary values are contained in the coefficients

o= 2] e e ag (16)

P, = mj 7.0 ( ) J (v, 0)p dp
2

O a7
Qs = ——2— [,(6)

Vn.kr‘]n+ I(Vn kr)

The coefficients F, , can be evaluated® by the fast Fourier
transform (FFT):

2 "t 2 + 1\ . 2wjk
F,.,=— § ——— | sin ——
n.k m ];J ]?n ( m m
k=1,2,...,m2 -1 (18)
where m is an integer power of 2 and the discrete values of
f, are obtained using the odd extension of the boundary
function f(g) on the interval 0 = ¢ < 2s. Accordingly, the
Fourier sine series is truncated to the first m/2 — 1 terms.
For the sake of notational convenience, the same number of
terms is also used for the truncated Fourier—Bessel series.

On the wind-tunnel axis, p = 0, we obtain from Egs. (9),
(14), (16), and (17)

mi2 -] Sin ng
u(¢, 0, 0) = A
¢ ) lZl ok Ly(pr)
et sinh v, (s — f) sinh v, &
+ A P21, 5 S
kz 1 [a(,(O) sinh v, ,.§ T4l o s sinh v, s

2

Vo st (Vo i)

(19)

where, according to Eq. (18)
23 2+ 1\ . 2k
Ay, = =~ 2 d, <s - > sin —mi (20)

Using the described procedure, the wall interference ve-
locity can also be evaluated at an arbitrary interior point of
the domain 0 < ¢ <5, 0=p<r,0=6 <2

The local Mach number correction is obtained from the
differential relationship between the Mach number and ve-
locity:

AM(x, r, 0) = (UB)L + [(v — DR2IMGMu(E, p, 6)  (21)

Propeller Far Field

The steady, subsonic far field of the propeller is derived
using the axial momentum theory. Figure 3 shows the four
stations of the (propulsive) stream tube representing the pro-
peller slip stream. Stations 1 and 2, respectively, are imme-
diately ahead of and immediately behind the propeller. Sta-
tions 0 and 3, respectively, are far upstream and far downstream.

The assumptions of the one-dimensional axial-momentum
theory are as follows:

1) The propeller is represented by an “actuator” disk, of
the same diameter as the actual propeller, across which axial
momentum is added to the slip stream.

2) The slip stream is confined within a stream tube of cir-
cular cross section, passing through the disk circumference
and extending from upstream infinity to downstream infinity.

3) The velocity in this stream tube is uniform and the rotary
motion is neglected.

4) The stream tube cross-sectional area is continuous across
the disk, A, = A4, = A,,.

5) Flow upstream and downstream of the disk is inviscid.

6) Far downstream, the static pressure in the wake returns
to the freestream value, p; = p,.

The efficiency of the propeller, defined as the propulsive
work divided by the power input, can be expressed in terms
of the propeller thrust and power, or the corresponding di-
mensionless coefficients, as

n = 0,T/P = J,CpICp 22)

The far-field effect of the slip-stream contraction will be
represented by a sink placed at the origin of the wind-tunnel
coordinate system (Fig. 3). The propeller axis is assumed to
coincide with the wind-tunnel axis, but the actual x coordinate
of the propeller disk is not known at this stage. Using the
scaled streamwise coordinate

&= x/B (23)
the potential of the sink will be
¢, = of(4mr) (24)
where
R GETS @3)
is the distance from the sink in the transformed space.

A combination of the source [Eq. (24)] and a uniform flow
normalized by freestream velocity v, is described by the ve-
locity potential

¢ = a/(4nr) + rcos © (26)
where

® = arccos &/r 27



1082 MOKRY
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0 1,2 3
Fig. 3 Slip-stream boundary modeled by a sink.

The corresponding (Stokes’) stream function is°
& = (o/dm)cos O + 1r? sin’@ (28)

Using Eq. (28), the slip-stream radius is

R = rsin ® = \/2[y — (o/4m)cos O], > (oldm) =0

(29)
and the slip-stream cross-sectional area
A = wR? = 2my — 10 cos O (30)
Far upstream and downstream
0=, A=A, =27y + 10 31
=0, A=A,=27¢y—}lo 32)

Adding and subtracting Eqs. (31) and (32), we obtain the
values of the stream function defining the boundary of the
slip stream

¥ = (V4m)(A, + Ay) (33)
and the sink strength
o= A, — A, (34)

Substituting Eqs. (33) and (34) in Eq. (30), we obtain for the
propeller disk

A, + Ay — 24

= £ 35
cos O, A - A, (35)

Taking into account Eq. (23), the axial coordinate of the
propeller is then

x, = BR, cot O, (36)

Incompressible Slip stream

The balance of the mass flux, momentum, and energy pro-
vides the following set of equations? for the incompressible,
inviscid flow inside the slip stream:

Station 0 — 1

Ay = Ay, 37
v3/2 + polp = vi2 + p)lp (38)
Station 1 - 2
U = 1, 39)
P+ pvi + TIA, = p, + pv} (40)

Station 2 — 3

Ayu, = Az, (41)
v3/2 4+ p,lp = vi/2 + pilp (42)
Far-field conditions
Ps = Do (43)
T = A, pvi(vs — vp) (44)

Here, A, vy, po, p, and T are expected to be known, and A,
As, vy, s, U3, Py, P2, and p; are expected to be unknown.
From Egs. (38—40) and (42) and (43)

T = A(p. — p) = 1A,p(v; — vj) (45)
and comparing it with Eq. (44) gives

v = vy = (v, + vy) (46)
both of them being well-known results from the Rankine—
Froude theory.

Using continuity relationships, Eqs. (37), (39), and (41),
we obtain for the area ratio

QE%:E: 1 +
3

Up )

(47)

and, from Eq. (45), in terms of thrust

T 8 C
Q= {1+ = 1 +—--L 48
J 4,007 J w73 49

The power used in producing thrust is

P = 3A,p0,(v3 — vg) = (v, + v)T (49)

Substituting Eq. (49) in Eq. (22) and using Eqs. (46) and (47),
we obtain the ideal (Froude) efficiency in terms of €):

Ma = 205/(vy + vs) = 2/(1 + ) (50)

From Eqgs. (37), (41), (46), and (47)
Ay/A, = vily, = (1 4+ Q) (51)
A A, = vluy = 31 + (U/Q)] (52)

and, substituting in Egs. (34-36)

o = {Q ~ (VD)A, (53)
cos @, = (O — HIQ + 1) (54)
x, = VA - (IIVO)IR, (55)

For a positive thrust, 0 > 1, we obtain x, > 0, indicating
that the propeller disk is downstream of the sink. Figure 4
shows that both o/A, and x,/R, increase as 7, decreases.

The obtained sink strength [Eq. (53)], can be readily used
to estimate the velocity correction for a propeller inside a
closed-wall wind tunnel. For an infinitely long, circular cross-
sectional wind tunnel, the correction to (unit) stream velocity
at a sink of strength ¢ on the tunnel axis is’

u= —al24,) = —Q - (VQ))(4,/A,)
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34 O'/Ap

=2 xp/Rp

Fig. 4 Sink strength and propeller location for incompressible slip
stream.
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Fig. 5 Ratio of uncorrected and corrected stream velocities in a closed-
wall wind tunnel.

3.0

Using Eq. (48), ) can further be expressed in terms of thrust
or its coefficient. In Fig. 5, the ratio of uncorrected and cor-
rected stream velocities is plotted as a function of

and compared with the successive approximation result by
Glauert.? We see that there is a good agreement for small
A,/A,, but the discrepancy becomes more apparent as the
size of the propeller with respect to the wind tunnel increases.
The source of this discrepancy is due to the fact that Glauert’s
correction technique? utilizes conservation of the axial mo-
mentum, whereas a correction method based on the sink rep-
resentation is, in general, nonconservative. (The contraction
of the slip stream in the wind tunnel is assumed the same as
it would be in free air.) Unfortunately, the more rigorous
method of Glauert cannot be extended to ventilated-wall wind
tunnels, where transfer of mass and momentum across the
walls is generally unknown. However, from the comparison
of both methods in Fig. 5 it appears that the technique de-

scribing the contraction of the slip stream by a sink will be
sufficiently accurate for blockage ratios A,/A,, below 10-15%.

Compressible Slip Stream

Compressible slip stream is described by the set of equa-
tionsll.ll

Station 0 — 1

Aopoty = A,;P1U1 (56)

v3 Y _Po_ i Y P
-+ — ===+ — 57
2 Yy—1p, 2 vy—1p 57)
Polps = pilpY (58)

Station 1 — 2

P11 = pPats (59)
P+ pwi T/Ap = p, + pov3 (60)
vj+ Y B P :v—%+—7 P (61)

2 y-1p Apv, 2 y-1p,

Station 2 — 3

Apyv, = Aspsus (62)
2 2
p2/pY = pslp3 (64)
Far-field conditions
Ps = Do (65)
T = A,pv(v; — v) (66)

Here, A,, vy, po» po, T, and P are expected to be known,
and A,, A;, vy, Uy, U3, Py Pas P3» Prs P2, and p; are expected
to be unknown.

From Egs. (57), (61), and (63), the power added to the
stream is

P = Apuv(v32 — vi2 + A) (67)
where
Ai =iy — iy = [yI(y = DI(ps/ps — po/po) (68)
is the increase of the slip-stream enthalpy, which does not
contribute to the production of thrust. If the process is is-
entropic
pilpl = palp3 (69)
then from Egs. (58), (64), and (65)
Pz = Po (70)
and Ai = 0. In that case from Eqgs. (66) and (67)
P = i(vy + vy))T (71)
and, substituting in Eq. (22)

N = 205/(vy + v3) = My (72)
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as for the incompressible slip stream, compare Eqgs. (49) and
(50).

The change of variables across the disk, which is treated as
a discontinuity, can be established from Egs. (59-61) using
a procedure similar to that for a normal shock,'* modified for
the presence of the thrust and power terms. The difference
of the velocities upstream and downstream of the propeller
disk is obtained from Egs. (59) and (60) as

v — vy = P2 PL (73)

Because mechanical energy is added to the stream at the disk,
we have to consider two critical velocities: ¢, upstream and
¢, downstream of the disk. The squares of these velocities
are, with the help of Eqgs. (57) and (61)

Ciy = 2y &+y_1v2= 2y &4—7—11/2

Y y+1lp v+l y+1p, y+17°
(74

C3x = 2y &—i-'y‘11/2=c2>,<+2‘y_1 P

Ty +lp, y+1 77 y + 1 Ap,
(75)

From Egs. (74) and (75) the ratios p,/p, and p,/p, can be
evaluated in terms of ¢, and substituted in Eq. (73). This
gives

(01 = v)less/(vw) — 1] = » (76)
or
v — (C3slvy + vy + V), + 3. =0 a7
where
2 P 1
v = T — - 1)— 78
I [7 (v )vl] Ao (78)

IfP=T =0, then v = 0 and also ¢;x = ¢,+« = c«. In this
case Eq. (76) provides either continuity v, = v,, or Prandtl’s
shock wave relationship v,v, = c%. The latter is relevant only
if v,/c« > 1. For a subcritical v,, the smaller root of Eq. (77)
v, = Hcdilv, + v, + V)

— V(v + v, + )2 — 4cd, (79)

is thus the one to be chosen.
From Egs. (78) and (22) it follows that » will be positive if

Ma =1 > [(v = Divfeo/o,
In this case the discriminant of Eq. (79) will satisfy
(c3elvy + v, + v)? — 4¢3 > (C3efv, — vy + ¥)2 >0
(80)

The direction of variation of quantities across the disk, as
obtained from Egs. (79), (80), (59), and (73), are such that

Z'2<U1, p2>p1’ p2>p1 + T/Ap

Calculations confirm that the corresponding entropy incre-
ment

s, = 5 = [RI(y = Die[(p2/p)(pi/p2)"]

is positive as one should expect.'*

Numerical solutions of the slip-stream equations (56—66)
are provided by an iterative procedure, consisting of succes-
sive sweeps through stations 0, 1, 2, and 3. Since A4, and A,
appear only in Egs. (56) and (62), they need not be directly
involved in the solution process. In the first sweep, the in-
compressible-flow values [see Eqs. (46-48)]

v, = 31 + Q)v,, v, = Qu, (81)
are used as the initial guesses.

Station 0 — 1
First, the mass flux density is evaluated from Eq. (66):

T

i = po, = ————— 82
j = pw Ao — ) (82)

Combining Egs. (57), (58), and (82), v, can be calculated as
a root of

fw) = vi = v + 2v/(y = D](polpo)
X [(jlpe)'vj™ — 1] =0 (83)

using Newton’s method. Since f has a local minimum at
Ui = [¥(Po/po)(jlpo) = D]V (84)

Eq. (83) has a solution only if
f(vlm) = 0 (85)

The limit f(v,,) = O determines the maximum j for which
the solution still exists. It can be shown that

max j < ji = py(Cix/cy)’ " Ve s

where ¢, is the upstream velocity of sound and j. is the critical
mass flux density corresponding to v; = ¢ .

The rest of the computational sweep is easy. Knowing j and
v,, the corresponding values of p, and p, are obtained from
Eqs. (82) and (58), respectively.

Mg = 0.700, 7= 0.80 74
Mo= 0.000, 77'-: nid

Fig. 6 Sink strength for compressible and incompressible slip-
streams.
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Station 1 — 2

The velocity behind the propeller plane v, is evaluated from
Eq. (79), where c,, and v are calculated from Eqgs. (75) and
(78), respectively. The value of p, is obtained from Egs. (59)
and (82), and p, from Eq. (75).

Station 2 — 3

The values of p, and p, are obtained successively from Egs.
(65) and (64), and v, from Eq. (63).

The compressible-flow values p,, v,, and v, are now used
to check if Eq. (66) is satisfied, subject to some accuracy
criterion (e.g., <7/10°). If not, j is slightly decreased and a
new sweep, starting with Eq. (83), is initiated. The subsequent
updates of j are obtained by interpolation or extrapolation,
targeting on the prescribed thrust while restricting the possible
overshoots of j by the condition described by Egs. (85) and
(84).

Once a converged result has been obtained, the cross-sec-
tional areas far upstream and downstream are evaluated from
Egs. (56) and (62) as

A, = A[)j/(p(lv())7 A; = A;)j/(p31’3) (86)
and substituted in Eq. (34) to obtain o.

An example of evaluated sink strengths is given in Fig. 6.
The values of /A, for an incompressible slip stream (broken
lines) collapse to the single curve of Fig. 4, when plotted as
a function of n,4. It is seen that the compressible-flow values
of o are a little less than the incompressible ones. Similar
calculations show that the effect of compressibility becomes
more significant as n decreases. However, for high-efficiency
propellers tested at M,, < 0.8 the incompressible stream ap-
proximation of ¢ is adequate.

Mo = 0.6010 AM = 0.0000
Cr = 0.0000
Jo = 0.0000
g
T : x . x
: . x*; ;%v
] LT - RS
O 0% o + 8= 34.09°
; a 0= 6057°
; v 0= 304.09°
3 : x 6= 330.17°
o N

T T T T T
-25 -20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5

Fig. 7 Wall pressures and axial Mach correction; without propeller.
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Propeller Test Example

The example given here is merely illustrative rather than
representative of the variety of situations that were encoun-
tered in the wind-tunnel study' of the de Havilland four-,
six-, and eight-bladed propfans.

The test stand (Fig. 1) mounted on the half-model balance
in the sidewall, was designed so that the measured data would
largely represent “isolated” propeller data, free from wing
interference. The nacelle, which contained a torque sensor in
its forebody and an electric motor drive in its aft cowling,
would still interact with the slip stream.

Porosity of the perforated walls of the 1.5 X 1.5 m test
section of the IAR Blowdown Wind Tunnel was set at 4%,
which turned out to be an appropriate choice for the test.
Wall pressure measurements were made using six static pres-
sure tubes, but only four of them, two on the outboard side-
wall (opposite to the mounting strut) and one on the top and
bottom wall each were used to evaluate wall interference.

Figures 7 and 8 show the measured wall pressures at M, =
0.601 and the axial Mach number corrections evaluated by
the described correction method, for a nacelle without and
with a (running) propeller. The propeller was tested at Reyn-
olds number 5 x 10%m.

The maximum radius of the nacelle cowling was 0.076 m,
and the radius of the four-bladed propeller was 0.305 m,
yielding wind-tunnel blockage ratios of 0.8 and 12.6%, re-
spectively.

Without a propeller (Fig. 7) the observed Mach number
correction is mainly due to flow nonuniformity in the empty
test section and the blockage effect of the nacelle. The far
field of the nacelle was represented by a sink-source body of
the same length and volume. The effect of the strut, attaching
the propeller rig to the sidewall, has not been accounted for.

For a propeller operating at 5000 rpm (Fig. 8) there is an
additional wall interference effect induced by the sink term
representing the corresponding contraction of the slip stream.

Mg = 0.6010 AM = 0.0005
Cy = 0.2250
Jg = 3.3200
3
= T
| R
A ! +
i ’$an
o eVe 4
S31 xT g &g@@gx*x + 6= 34.09°
' a 8= 60.57°
: v 6= 304.09°
3 ' x 6= 330.17°
e T T T T T T
-25 —-20 -15 -1.0 -05 0.0 0.5 1.0 1.5
3
5
S8
g
S
i T T T T T

T T
~-25 -20 -15 -1.0 -05 0.0 0.5 1.0 1.5

Fig. 8 Wall pressures and axial Mach correction; with propeller.
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The strength of the sink was obtained from the measured C;.
and J, using the incompressible-flow approximation.

Although the differences of the wall pressures in the two
cases are barely discernible, there is some difference in the
calculated AM curves. At the propeller location (vertical bro-
ken line), AM = 0.0000 with power off and AM = 0.0005
with power on. From the repeat runs it appeared that the
accuracy of AM was about +=0.0002.

It is evident that by just evaluating AM along the wind-
tunnel axis the method has not been utilized to its full capacity.
Using Egs. (9) and (21), AM can be calculated anywhere
inside the (cylindrical) flow domain shown in Fig. 2. The
variations of AM in the propeller plane would be of interest
when evaluating propeller performance from flowfield mea-
surements, ‘¢ but first the influence of the boundary data in-
terpolation at the upstream and downstream ends [see Eqs.
(13)] would have to be assessed. By integrating the irrotational
flow conditions, the radial component of wall interference
velocity can also be evaluated.*

Concluding Remarks

A one-component correction method has been proposed
for propellers (and propfans) tested at subsonic speeds in
perforated wall wind tunnels. The streamwise component of
the wall interference velocity at the wind-tunnel boundaries
is derived from the static pressure tube measurements and
the far field of the propeller in free air. The radial contraction
of the propulsive stream tube is modeled in the far field by
a sink term, whose strength and location are evaluated from
the measured thrust and power using axial momentum theory.
The axial values of the wall interference velocity are then
obtained from the Fourier solution of a Dirichlet problem
inside a cylindrical flow domain.

A comparison with the Glauert correction? for incompress-
ible flow in a closed-wall wind tunnel shows a good agreement
for blockage ratios (propeller disk area to wind-tunnel cross
section) up to about 10%. For higher blockage ratios the
method described here provides a sink strength that under-
estimates the closed-wall corrections according to Glauert.
Based on the conservation laws, Glauert’s approach is the
more rigorous one, but unfortunately, cannot be applied to
ventilated-wall wind tunnels, where fluxes of mass and mo-
mentum across the walls are generally unknown. Evidently,
a sink strength that provides a perfect agreement with Glauert’s
theory in the closed-wall case could also be used to correct
propeller tests in the perforated-wall case, but justifiably only
at small wall porosities. This combination of the two methods,
which could provide a viable alternative to correcting low
speed wind-tunnel tests of propellers at high blockage ratios,
has not been further explored.

In the derivation of the subsonic sink strength a complete
overview of the compressible-flow theory for the propelier
disk has been given. Of main concern was the possible exis-
tence of two different solutions for the compressible slip-
stream equations, as described by Delano and Crigler.!2 How-
ever, postprocessing of the published results from the same
reference'? has shown that the solution in which flow accel-
erates across the propeller disk into supersonic speeds is, in
analogy to an expansion shock, accompanied by a decrease
in entropy. A physically meaningful solution,' providing a
nonnegative entropy increment, decelerates flow across the
disk and exists for a range of efficiencies below the ideal
(Froude) efficiency. The corresponding slip-stream velocities,
obtained numerically by Newton’s method, were found to
provide a sink strength that is somewhat less than that ob-
tained by an incompressible-flow approximation.

In the TAR Blowdown Wind-Tunnel test section, whose
perforated walls with 60-deg slanted holes were set at 4%
openness ratio, the blockage correction evaluated for the de
Havilland propeller tests was found to be rather small, not
significantly influencing the measured propeller performance

characteristics.'® The source strength, used to model the pro-
peller far field in this low-correction case, was the one ob-
tained from the incompressible slip-stream theory. The ob-
tained result indicates that perforated walls are indeed suitable
for high-speed propeller testing, now that the corresponding
wall interference effect can also be quantified.

Appendix: Fourier Solution

The solution of the boundary value problem described by
Eqgs. (13) can be obtained as

F& p) = ful& p) + f2(E p)

where f,, and f,, are the solutions of the separate problems

D,fu(§,p) =0, 0<¢(<s, O0=p<r
ful&n) =), O0=¢=s
fu@,p) =0, O0=p<r
fu(ssp) =0, O0=p<r
D,foé,p) =0, 0<é<s, 0=p<r
for) =0, 0<&<s
£200, p) = 1,0)plry, O=p=r
fals, p) = Ls)olr)',  O0=p=r

First problem: separating the variables as

fulé p) = X(E)R\(p)

we obtain, using the differential operator (11)

XN RY R

n2
L
X, R, PR, p°

2

where —pu? is a constant (selected to be negative). The ei-
genvalue problem

X+ p?X, =0, 0<é<s
X,(0) = X(s) = 0

obtained from the first differential equation and the homo-
geneous boundary conditions, is satisfied for the eigenfunc-
tions sin u,&, where w, is given by the first of Egs. (15). Since
a nonsingular solution of the second differential equation

p’R| + pR; — (n?p% + )R, = 0, O=sp<r
is
Rl = F[Irl(l‘Lp)/In(l’Lr)]

where F is an arbitrary constant, we can construct f,; as

%

fnl(gv P) = z F, M

. sin
k=1 g In(l’l’kr) #kg

The substitution in the nonhomogeneous boundary condition
leads to the Fourier sine series

21 Fsinpé =f(&), 0=é=s

so that F, , has to be chosen as described by Eq. (16).
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Second problem: using
fi(€ p) = X(E)R:(p)
we obtain

Xy RY R

n?
= + _
X, R, PR,  p?

where »v?is a constant (selected to be positive). The eigenvalue
problem
pP’RS + pR; + (v?p* —

n)R, = 0, O=sp<r

R)r) =0
is satisfied for the nonsingular functions J,(», «p), where v, ,

is given by the second of Egs. (15). Since the general solution
of

X5 — viX, =0, 0<é<s
is
X. = p sinh.v(s - &) s-inh vé
- sinh vs sinh vs

where P and Q are arbitrary constants, we can construct f,,
as

fualé, p) = Z l:P”k sinh », ;s

k=1

+ Qn«k

sinh v, &
sinh v, ;s
X ]n(ymkp)

The substitution in the nonhomogeneous boundary conditions
leads to the Fourier—Bessel series

T

P, J,(v,0) = f,,(O)(p/r)”, O=p=r

M s

Q. d(vaip) = )y, O0=p=r

x
il

From the orthogonality properties of the Bessel functions it
follows that the coefficients P, , and Q, , have to satisfy Eqs.
(17).
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